End-point PCR with high-throughput instruments
End-point polymerase chain reaction (PCR)
Single-nucleotide polymorphisms (SNPs)
A single-nucleotide polymorphism (SNP) is a base pair substitution at a specific locus within a DNA sequence. SNPs are the simplest and most common type of genetic variation and are used to quickly and easily identify heritable differences among individual plants, animals, or humans within a population. Importantly, researchers are building an ever-increasing library of SNPs that are linked to agriculturally and medically important phenotypes including susceptibility to disease or environmental stress as well as response to medication or treatment regimens.
Applications for SNP genotyping
Plant and animal marker-assisted breeding
Following Mendel’s rule of inheritance, single-nucleotide polymorphisms (SNPs) are evolutionarily conserved and therefore, are useful in plant and animal marker-assisted breeding programs. Using SNP genotyping, selective breeding is accelerated by allowing traits to be identified and selected prior to growing the organism to maturity – saving time and money. Large-scale quality control testing also benefits from SNP genotyping, using these simple markers as a 'genetic fingerprint' to trace samples as well as estimate the purity of a population.
Human genetics
SNPs are used in large scale epidemiological studies to identify specific variations in genes that influence susceptibility to disease and response to medication or treatment. Once identified, SNPs may be used to diagnose individuals carrying the gene of interest, which provides critical information necessary to personalize medical care. Human identity testing also may be achieved using the “genetic fingerprint” provided by SNP genotyping.
Cost effective benefits of SNP genotyping
Array Tape™ provides a cost-effective solution for studies designed to identify a moderate number of SNPs in larger population sizes.